Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Virol ; 97(10): e0067423, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37830821

RESUMO

IMPORTANCE: Vaccines targeting highly conserved proteins can protect broadly against diverse viral strains. When a vaccine is administered to the respiratory tract, protection against disease is especially powerful. However, it is important to establish that this approach is safe. When vaccinated animals later encounter viruses, does reactivation of powerful local immunity, including T cell responses, damage the lungs? This study investigates the safety of mucosal vaccination of the respiratory tract. Non-replicating adenoviral vaccine vectors expressing conserved influenza virus proteins were given intranasally. This vaccine-induced protection persists for at least 15 months. Vaccination did not exacerbate inflammatory responses or tissue damage upon influenza virus infection. Instead, vaccination with nucleoprotein reduced cytokine responses and histopathology, while neutrophil and T cell responses resolved earlier. The results are promising for safe vaccination at the site of infection and thus have implications for the control of influenza and other respiratory viruses.


Assuntos
Vacinas contra Influenza , Infecções por Orthomyxoviridae , Animais , Camundongos , Anticorpos Antivirais , Vacinas contra Influenza/imunologia , Pulmão , Camundongos Endogâmicos BALB C , Orthomyxoviridae , Infecções por Orthomyxoviridae/prevenção & controle , Vacinação/métodos , Adenoviridae
2.
J Virol ; 96(12): e0032022, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35638848

RESUMO

Vaccination against influenza virus infection can protect the vaccinee and also reduce transmission to contacts. Not all types of vaccines induce sterilizing immunity via neutralizing antibodies; some instead permit low-level, transient infection. There has been concern that infection-permissive influenza vaccines may allow continued spread in the community despite minimizing symptoms in the vaccinee. We have explored that issue for a universal influenza vaccine candidate that protects recipients by inducing T cell responses and nonneutralizing antibodies. Using a mouse model, we have shown previously that an adenoviral vectored vaccine expressing nucleoprotein (NP) and matrix 2 (M2) provides broad protection against diverse strains and subtypes of influenza A viruses and reduces transmission to contacts in an antigen-specific manner. Here, we use this mouse model to further explore the mechanism and features of that reduction in transmission. Passive immunization did not reduce transmission from infected donors to naive contact animals to whom passive serum had been transferred. Vaccination of antibody-deficient mIgTg-JHD-/- mice, which have intact T cell responses and antigen presentation, reduced transmission in an antigen-specific manner, despite the presence of some virus in the lungs and nasal wash, pointing to a role for cellular immunity. Vaccination at ages ranging from 8 to 60 weeks was able to achieve reduction in transmission. Finally, the immune-mediated reduction in transmission persisted for at least a year after a single-dose intranasal vaccination. Thus, this infection-permissive vaccine reduces virus transmission in a long-lasting manner that does not require antibodies. IMPORTANCE Universal influenza virus vaccines targeting antigens conserved among influenza A virus strains can protect from severe disease but do not necessarily prevent infection. Despite allowing low-level infection, intranasal immunization with adenovirus vectors expressing the conserved antigens influenza nucleoprotein (A/NP) and M2 reduces influenza virus transmission from vaccinated to unvaccinated contact mice. Here, we show that antibodies are not required for this transmission reduction, suggesting a role for T cells. We also show that transmission blocking could be achieved in recipients of different ages and remained effective for at least a year following a single-dose vaccination. Such vaccines could have major public health impacts by limiting viral transmission in the community.


Assuntos
Vírus da Influenza A , Vacinas contra Influenza , Infecções por Orthomyxoviridae , Adenoviridae , Animais , Anticorpos Antivirais , Humanos , Imunidade Celular , Vírus da Influenza A/genética , Vacinas contra Influenza/imunologia , Influenza Humana , Proteínas do Nucleocapsídeo/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/transmissão , Linfócitos T/imunologia , Vacinação , Proteínas da Matriz Viral/imunologia , Proteínas Viroporinas/imunologia
3.
Vaccine ; 39(33): 4628-4640, 2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34226103

RESUMO

Current influenza vaccines rely on inducing antibody responses to the rapidly evolving hemagglutinin (HA) and neuraminidase (NA) proteins, and thus need to be strain-matched. However, predictions of strains that will circulate are imperfect, and manufacturing of new vaccines based on them takes months. As an alternative, universal influenza vaccines target highly conserved antigens. In proof of concept studies of universal vaccine candidates in animal models challenge is generally conducted only a short time after vaccination, but protective immunity lasting far longer is important for the intended public health impact. We address the challenge of providing long-term protection. We demonstrate here broad, powerful, and long-lasting immune protection for a promising universal vaccine candidate. A single intranasal dose of recombinant adenoviruses (rAd) expressing influenza A nucleoprotein (A/NP) and matrix 2 (M2) was used. Extending our previous studies of this type of vaccine, we show that antibody and T-cell responses persist for over a year without boosting, and that protection against challenge persists a year after vaccination and remains broad, covering both group 1 and 2 influenza A viruses. In addition, we extend the work to influenza B. Immunization with influenza B nucleoprotein (B/NP)-rAd also gives immune responses that last a year without boosting and protect against challenge with influenza B viruses of mismatched HA lineages. Despite host immunity to adenoviral antigens, effective readministration is possible a year after primary vaccination, as shown by successful immunization to a transgene product the animals had not seen before. Protection against challenge with divergent and highly pathogenic A/H7N9 virus was weaker but was enhanced by a second dose of vaccine. Thus, this mucosal vaccination to conserved influenza antigens confers very long-lasting immune protection in animals against a broad range of influenza A and B viruses.


Assuntos
Subtipo H7N9 do Vírus da Influenza A , Vacinas contra Influenza , Infecções por Orthomyxoviridae , Animais , Anticorpos Antivirais , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Imunidade , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/prevenção & controle , Vacinação
4.
PLoS One ; 14(4): e0215321, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30986224

RESUMO

Current approaches to influenza control rely on vaccines matched to viruses in circulation. Universal influenza vaccines would offer the advantage of providing broad protection against diverse strains of influenza virus. Candidate universal vaccines are developed using model systems, often testing in naïve animals. Yet the human population is not naïve, having varied immune histories that include exposure to viruses. We studied a candidate universal influenza vaccine (replication deficient adenoviruses expressing the conserved influenza A antigens NP and M2 [A/NP+M2-rAd]) given intranasally, the route previously shown to be most effective. To model recipients exposed to viruses, we used mice given rhinovirus (RV1B), respiratory syncytial virus (RSV-A2), influenza B virus, or influenza A virus before or after universal influenza vaccine. Vaccine performance was assessed by measuring immune responses to NP and M2, and monitoring weight loss and survival following influenza A challenge. Prior influenza A virus infection enhanced the response to the vaccine by priming to conserved influenza A antigens. RSV-A2 or RV1B had no effect on antibody responses to NP and M2 in serum. None of the viruses inhibited the ability of the vaccine to protect against influenza A virus challenge. The study demonstrates that the usefulness of this universal vaccine is not confined to the immunologically naïve and supports possible use in a human population with a varied history of respiratory infections.


Assuntos
Imunodeficiência de Variável Comum/imunologia , Infecções por Coxsackievirus/imunologia , Enterovirus/imunologia , Imunogenicidade da Vacina , Vírus da Influenza A/imunologia , Vírus da Influenza B/imunologia , Vacinas contra Influenza/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Animais , Imunodeficiência de Variável Comum/virologia , Infecções por Coxsackievirus/patologia , Feminino , Células HeLa , Humanos , Vacinas contra Influenza/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/patologia
5.
Vaccine ; 36(32 Pt B): 4910-4918, 2018 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-30037481

RESUMO

Transmission of influenza virus between susceptible hosts mediates spread of infection in the population and can occur via direct-contact or airborne routes. Mathematical models suggest that vaccines that reduce viral transmission from infected individuals could substantially reduce viral spread in an epidemic or pandemic, even if they do not completely protect against infection. Vaccines targeting conserved nucleoprotein (A/NP) and matrix 2 (M2) antigens of influenza virus do not completely prevent infection upon influenza virus challenge, but reduce viral replication, morbidity, and mortality. Using a mouse model of influenza virus transmission, we have previously shown that immunization with recombinant adenovirus vectors expressing the combination of A/NP and M2 can reduce viral transmission to unimmunized contacts. Here we demonstrate that transmission reduction is more effective when mice are immunized against A/NP and M2 intranasally than via the intramuscular route. We show that immunization against the combination of A/NP and M2 is more effective at reducing transmission than either antigen alone, with a clear hierarchy of effectiveness (A/NP + M2 > A/NP > M2). Transmission reduction is seen to a similar degree under both direct-contact and airborne transmission conditions. Finally, using seroconversion as an indicator of infection, we show that immunizing contact mice against A/NP and M2 prevents a significant fraction (∼50%) from becoming infected under direct-contact conditions. These findings suggest that when strain-matched vaccines are unavailable, conserved antigen vaccines could not only reduce severity of disease in vaccinated individuals but also limit the spread of virus during influenza epidemics or pandemics.


Assuntos
Antígenos Virais/imunologia , Vacinas contra Influenza/uso terapêutico , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Adenoviridae/genética , Animais , Feminino , Humanos , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H1N1/patogenicidade , Vírus da Influenza A Subtipo H3N2/imunologia , Vírus da Influenza A Subtipo H3N2/patogenicidade , Vacinas contra Influenza/imunologia , Camundongos , Vacinação/métodos
6.
Vaccine ; 36(7): 1008-1015, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29249542

RESUMO

Universal influenza vaccines are designed to protect against diverse strains of influenza virus. Preclinical testing of new vaccine candidates is usually done in naïve animals, despite intended use in the human population with its varied immune history including responses to previous vaccinations. As an approach more relevant to human use, we tested a candidate universal influenza vaccine in mice with a history of conventional vaccination. Female BALB/c mice were given two intramuscular doses of inactivated influenza vaccine (IIV) or diphtheria and tetanus toxoids vaccine (DT), one month apart. Another group was given two intranasal doses of live attenuated influenza virus (LAIV). One month after the second dose, mice were given the universal influenza vaccine: recombinant adenoviruses expressing influenza A nucleoprotein (A/NP) and matrix 2 (M2) (A/NP + M2-rAd). Immune responses to universal vaccine antigens A/NP and M2 were assessed by ELISA and interferon-γ ELISPOT. Protection was tested by challenge with mouse-adapted A/FM/1/47 (H1N1) and monitoring for weight loss and survival. Universal vaccine performance was enhanced, inhibited or unaffected by particular prior vaccinations. Mice given Afluria IIV and LAIV had greater antibody and T-cell response to A/NP than mice without prior vaccination, providing examples of enhanced A/NP + M2-rAd performance. Though Fluvirin IIV partially inhibited, the universal vaccine still provided considerable protection unlike conventional vaccination. Fluzone IIV and DT had no effect on A/NP + M2-rAd performance. Thus our results demonstrate that universal vaccine candidate A/NP + M2-rAd was at least partially effective in mice with diverse prior histories. However, the degree of protection and nature of the immune responses may be affected by a history of conventional vaccination and suggests that performance in humans would be influenced by immune history.


Assuntos
Vírus da Influenza A/imunologia , Vacinas contra Influenza/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Antígenos Virais/imunologia , Modelos Animais de Doenças , Feminino , Imunidade Celular/imunologia , Imunidade nas Mucosas , Imunização , Vacinas contra Influenza/classificação , Camundongos , Avaliação de Resultados em Cuidados de Saúde , Vacinas de Produtos Inativados/imunologia , Proteínas Virais/imunologia
7.
PLoS One ; 11(4): e0153195, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27055234

RESUMO

Influenza has a major impact on the elderly due to increased susceptibility to infection with age and poor response to current vaccines. We have studied universal influenza vaccine candidates based on influenza A nucleoprotein and matrix 2 (A/NP+M2). Long-lasting protection against influenza virus strains of divergent subtypes is induced, especially with mucosal immunization. Here, we tested universal vaccination in BALB/c mice of different ages. Vaccination used intramuscular DNA priming to A/NP+M2 followed by intranasal (i.n.) boosting with recombinant adenoviruses (rAd) expressing the same antigens, or only A/NP+M2-rAd given i.n. Antigen-specific systemic antibody responses were induced in young, middle-aged, and elderly mice (2, 11-17, and 20 months old, respectively), but decreased with age. Antibody responses in bronchoalveolar lavage (BAL) were detected only in young mice. Antigen-specific T cell responses were seen in young and middle-aged but not elderly mice. A/NP+M2 vaccination by the two regimens above protected against stringent challenge in young and middle-aged mice, but not in elderly mice. However, mice vaccinated with A/NP-rAd or A/M2-rAd during their youth were partially protected against challenge 16 months later when they were elderly. In addition, a regimen of two doses of A/NP+M2-rAd given i.n. one month apart beginning in old age protected elderly mice against stringent challenge. This study highlights the potential benefit of cross-protective vaccines through middle age, and suggests that their performance might be enhanced in elderly individuals who had been exposed to influenza antigens early in life, as most humans have been, or by a two-dose rAd regimen given later in life.


Assuntos
Anticorpos Antivirais/sangue , Imunidade nas Mucosas/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/uso terapêutico , Infecções por Orthomyxoviridae/imunologia , Adenoviridae/genética , Fatores Etários , Animais , Anticorpos Antivirais/imunologia , Proteção Cruzada , Feminino , Citometria de Fluxo , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/virologia , Vacinação
8.
J Virol ; 88(11): 6019-30, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24623430

RESUMO

UNLABELLED: Pandemic influenza is a major public health concern, but conventional strain-matched vaccines are unavailable early in a pandemic. Candidate "universal" vaccines targeting the viral antigens nucleoprotein (NP) and matrix 2 (M2), which are conserved among all influenza A virus strains and subtypes, could be manufactured in advance for use at the onset of a pandemic. These vaccines do not prevent infection but can reduce disease severity, deaths, and virus titers in the respiratory tract. We hypothesized that such immunization may reduce virus transmission from vaccinated, infected animals. To investigate this hypothesis, we studied mouse models for direct-contact and airborne transmission of H1N1 and H3N2 influenza viruses. We established conditions under which virus transmission occurs and showed that transmission efficiency is determined in part at the level of host susceptibility to infection. Our findings indicate that virus transmission between mice has both airborne and direct-contact components. Finally, we demonstrated that immunization with recombinant adenovirus vectors expressing NP and M2 significantly reduced the transmission of virus to cohoused, unimmunized mice in comparison to controls. These findings have broad implications for the impact of conserved-antigen vaccines, not only in protecting the vaccinated individual but also in protecting others by limiting influenza virus transmission and potentially reducing the size of epidemics. IMPORTANCE: Using a mouse model of influenza A virus transmission, we demonstrate that a candidate "universal" influenza vaccine both protects vaccinated animals from lethal infection and reduces the transmission of virus from vaccinated to nonvaccinated mice. This vaccine induces immunity against proteins conserved among all known influenza A virus strains and subtypes, so it could be used early in a pandemic before conventional strain-matched vaccines are available and could potentially reduce the spread of infection in the community.


Assuntos
Suscetibilidade a Doenças/virologia , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H3N2/imunologia , Vacinas contra Influenza/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/transmissão , Adenoviridae , Animais , Lavagem Broncoalveolar , Estudos de Casos e Controles , Ensaio de Imunoadsorção Enzimática , Vetores Genéticos/administração & dosagem , Vetores Genéticos/imunologia , Testes de Inibição da Hemaglutinação , Imunidade nas Mucosas , Camundongos , Testes de Neutralização , Nucleoproteínas/metabolismo , Proteínas da Matriz Viral/metabolismo
9.
PLoS One ; 8(3): e55435, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23536756

RESUMO

Among approximately 1000 adenoviruses from chimpanzees and bonobos studied recently, the Pan Adenovirus type 3 (PanAd3, isolated from a bonobo, Pan paniscus) has one of the best profiles for a vaccine vector, combining potent transgene immunogenicity with minimal pre-existing immunity in the human population. In this study, we inserted into a replication defective PanAd3 a transgene expressing a fusion protein of conserved influenza antigens nucleoprotein (NP) and matrix 1 (M1). We then studied antibody and T cell responses as well as protection from challenge infection in a mouse model. A single intranasal administration of PanAd3-NPM1 vaccine induced strong antibody and T cell responses, and protected against high dose lethal influenza virus challenge. Thus PanAd3 is a promising candidate vector for vaccines, including universal influenza vaccines.


Assuntos
Adenovirus dos Símios/imunologia , Antígenos Virais/imunologia , Vetores Genéticos/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Adenovírus Humanos/imunologia , Adenovirus dos Símios/genética , Sequência de Aminoácidos , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Antígenos Virais/genética , Reações Cruzadas/imunologia , Feminino , Expressão Gênica , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Humanos , Imunidade nas Mucosas , Vírus da Influenza A Subtipo H1N1/genética , Vacinas contra Influenza/administração & dosagem , Camundongos , Dados de Sequência Molecular , Proteínas do Nucleocapsídeo , Nucleofosmina , Pan paniscus , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/imunologia , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Linfócitos T/imunologia , Proteínas do Core Viral/química , Proteínas do Core Viral/genética , Proteínas do Core Viral/imunologia , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/imunologia
10.
PLoS One ; 6(7): e21937, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21789196

RESUMO

BACKGROUND: The rapid spread of the 2009 H1N1 pandemic influenza virus (pH1N1) highlighted problems associated with relying on strain-matched vaccines. A lengthy process of strain identification, manufacture, and testing is required for current strain-matched vaccines and delays vaccine availability. Vaccines inducing immunity to conserved viral proteins could be manufactured and tested in advance and provide cross-protection against novel influenza viruses until strain-matched vaccines became available. Here we test two prototype vaccines for cross-protection against the recent pandemic virus. METHODOLOGY/PRINCIPAL FINDINGS: BALB/c and C57BL/6 mice were intranasally immunized with a single dose of cold-adapted (ca) influenza viruses from 1977 or recombinant adenoviruses (rAd) expressing 1934 nucleoprotein (NP) and consensus matrix 2 (M2) (NP+M2-rAd). Antibodies against the M2 ectodomain (M2e) were seen in NP+M2-rAd immunized BALB/c but not C57BL/6 mice, and cross-reacted with pH1N1 M2e. The ca-immunized mice did not develop antibodies against M2e. Despite sequence differences between vaccine and challenge virus NP and M2e epitopes, extensive cross-reactivity of lung T cells with pH1N1 peptides was detected following immunization. Both ca and NP+M2-rAd immunization protected BALB/c and C57BL/6 mice against challenge with a mouse-adapted pH1N1 virus. CONCLUSION/SIGNIFICANCE: Cross-protective vaccines such as NP+M2-rAd and ca virus are effective against pH1N1 challenge within 3 weeks of immunization. Protection was not dependent on recognition of the highly variable external viral proteins and could be achieved with a single vaccine dose. The rAd vaccine was superior to the ca vaccine by certain measures, justifying continued investigation of this experimental vaccine even though ca vaccine is already available. This study highlights the potential for cross-protective vaccines as a public health option early in an influenza pandemic.


Assuntos
Adaptação Fisiológica/imunologia , Adenoviridae/imunologia , Proteção Cruzada/imunologia , Imunidade/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/imunologia , Vacinas Sintéticas/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Antivirais/sangue , Temperatura Baixa , Epitopos/química , Epitopos/imunologia , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Infecções por Orthomyxoviridae/sangue , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Pandemias , Linfócitos T/imunologia , Vacinação , Carga Viral/imunologia
11.
PLoS One ; 5(10): e13162, 2010 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-20976273

RESUMO

BACKGROUND: The sudden emergence of novel influenza viruses is a global public health concern. Conventional influenza vaccines targeting the highly variable surface glycoproteins hemagglutinin and neuraminidase must antigenically match the emerging strain to be effective. In contrast, "universal" vaccines targeting conserved viral components could be used regardless of viral strain or subtype. Previous approaches to universal vaccination have required protracted multi-dose immunizations. Here we evaluate a single dose universal vaccine strategy using recombinant adenoviruses (rAd) expressing the conserved influenza virus antigens matrix 2 and nucleoprotein. METHODOLOGY/PRINCIPAL FINDINGS: In BALB/c mice, administration of rAd via the intranasal route was superior to intramuscular immunization for induction of mucosal responses and for protection against highly virulent H1N1, H3N2, or H5N1 influenza virus challenge. Mucosally vaccinated mice not only survived, but had little morbidity and reduced lung virus titers. Protection was observed as early as 2 weeks post-immunization, and lasted at least 10 months, as did antibodies and lung T cells with activated phenotypes. Virus-specific IgA correlated with but was not essential for protection, as demonstrated in studies with IgA-deficient animals. CONCLUSION/SIGNIFICANCE: Mucosal administration of NP and M2-expressing rAd vectors provided rapid and lasting protection from influenza viruses in a subtype-independent manner. Such vaccines could be used in the interval between emergence of a new virus strain and availability of strain-matched vaccines against it. This strikingly effective single-dose vaccination thus represents a candidate off-the-shelf vaccine for emergency use during an influenza pandemic.


Assuntos
Imunidade nas Mucosas , Vacinas contra Influenza/administração & dosagem , Influenza Humana/prevenção & controle , Administração Intranasal , Antígenos Virais/imunologia , Humanos , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Vírus da Influenza A Subtipo H1N1/patogenicidade , Vírus da Influenza A Subtipo H3N2/imunologia , Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Vírus da Influenza A Subtipo H3N2/patogenicidade , Virus da Influenza A Subtipo H5N1/imunologia , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Virus da Influenza A Subtipo H5N1/patogenicidade , Vacinas contra Influenza/imunologia , Influenza Humana/virologia , Virulência
12.
Vaccine ; 27(47): 6512-21, 2009 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-19729082

RESUMO

Immunization against conserved virus components induces broad, heterosubtypic protection against diverse influenza A viruses, providing a strategy for controlling unexpected outbreaks or pandemics until strain-matched vaccines become available. This study characterized immunization to nucleoprotein (NP) and matrix 2 (M2) by DNA priming followed by parenteral or mucosal boosting in mice and ferrets. DNA vaccination followed by boosting with antigen-matched recombinant adenovirus (rAd) or cold-adapted (ca) influenza virus provided robust protection against virulent H1N1 and H5N1 challenges. Compared to other boosts, mucosal rAd induced stronger IgA responses, more virus-specific activated T-cells in the lung, and better protection against morbidity following challenge even eight months post-boost. In ferrets, both mucosal and parenteral rAd boosting protected from lethal H5N1 challenge. These findings demonstrate potent protection by vaccination highly focused on conserved antigens and identify immune response measures in mice that differed among vaccinations and correlated with outcome.


Assuntos
Vírus da Influenza A Subtipo H1N1/imunologia , Virus da Influenza A Subtipo H5N1/imunologia , Vacinas contra Influenza/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Animais , Anticorpos Antivirais/sangue , Feminino , Furões , Imunidade nas Mucosas , Imunização Secundária , Imunoglobulina A/sangue , Memória Imunológica , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Proteínas do Nucleocapsídeo , Infecções por Orthomyxoviridae/imunologia , Proteínas de Ligação a RNA/imunologia , Linfócitos T/imunologia , Proteínas do Core Viral/imunologia , Proteínas da Matriz Viral/imunologia
13.
Vaccine ; 26(17): 2062-72, 2008 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-18378366

RESUMO

Influenza epidemics or pandemics can arise for which strain- or subtype-matched vaccines are unavailable. Heterosubtypic immunity (Het-I) targeting conserved influenza A antigens could reduce morbidity and mortality during preparation of matched vaccines. Various vaccines inducing Het-I in animals have been studied separately using different viruses and conditions, but effectiveness for inducing Het-I has not been directly compared. The present studies compared immunization with cold-adapted (ca) viruses to DNA prime-recombinant adenovirus (rAd) boost vaccination to conserved antigens nucleoprotein (NP), matrix-2 (M2), or A/NP+M2. Both ca and DNA-rAd vaccinations induced antibody and T cell responses, and protected against lethal H1N1 challenge. Only A/NP+M2 DNA-rAd protected against challenge with highly pathogenic A/Vietnam/1203/2004 (H5N1); ca vaccine did not. Existing ca vaccines may provide some Het-I, but experimental vaccination focusing on conserved antigens was more effective in this model for protection against a divergent, highly pathogenic virus.


Assuntos
Anticorpos Antivirais/imunologia , Reações Cruzadas , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Adenoviridae/imunologia , Animais , Anticorpos Antivirais/sangue , Especificidade de Anticorpos , Vírus da Influenza A Subtipo H1N1/patogenicidade , Vírus da Influenza A , Vacinas contra Influenza/administração & dosagem , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/fisiopatologia , Infecções por Orthomyxoviridae/virologia , Vacinas de DNA/imunologia , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia
14.
J Virol ; 79(13): 8545-59, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15956596

RESUMO

Antigenic variation is a viral strategy exploited to promote survival in the face of the host immune response and represents a major challenge for efficient vaccine development. Influenza viruses are pathogens with high transmissibility and mutation rates, enabling viral escape from immunity induced by prior infection or vaccination. Intense selection from neutralizing antibody drives antigenic changes in the surface glycoproteins, resulting in emergence of new strains able to reinfect hosts immune to previously circulating viruses. CD8+ cytotoxic T cells (CTLs) also provide protective immunity from influenza virus infection and may contribute to the antigenic evolution of influenza viruses. Utilizing mice transgenic for an influenza virus NP366-374 peptide-specific T-cell receptor, we demonstrated that the respiratory tract is a suitable site for generation of escape variants of influenza virus selected by CTL in vivo. In this report the contributions of the perforin and Fas pathways utilized by influenza virus-specific CTLs in viral clearance and selection of CTL escape variants have been evaluated. While transgenic CTLs deficient in either perforin- or Fas-mediated pathways are efficient in initial pulmonary viral control, variant virus emergence was observed in all the mice studied, although the spectrum of viral CTL escape variants selected varied profoundly. Thus, a less-restricted repertoire of escape variants was observed in mice with an intact perforin cytotoxic pathway compared with a limited variant diversity in perforin pathway-deficient mice, although maximal variant diversity was observed in mice having both Fas and perforin pathways intact. We conclude that selection of viral CTL escape variants reflects coordinate action between the tightly controlled perforin/granzyme pathway and the more promiscuous Fas/FasL pathway.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Variação Genética , Glicoproteínas de Membrana/fisiologia , Orthomyxoviridae/genética , Receptor fas/fisiologia , Animais , Sequência de Bases , Primers do DNA , Proteína Ligante Fas , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/fisiologia , Glicoproteínas de Membrana/deficiência , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Perforina , Proteínas Citotóxicas Formadoras de Poros
15.
J Virol ; 78(7): 3578-600, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15016881

RESUMO

The hallmarks of the immune response to viral infections are the expansion of antigen-specific CD8(+) cytotoxic T lymphocytes (CTLs) after they encounter antigen-presenting cells in the lymphoid tissues and their subsequent redistribution to nonlymphoid tissues to deal with the pathogen. Control mechanisms exist within CTL activation pathways to prevent inappropriate CTL responses against disseminating infections with a broad distribution of pathogen in host tissues. This is demonstrated during overwhelming infection with the noncytolytic murine lymphocytic choriomeningitis virus, in which clonal exhaustion (anergy and/or deletion) of CTLs prevents immune-mediated pathology but allows persistence of the virus. The mechanism by which the immune system determines whether or not to mount a full response to such infections is unknown. Here we present data showing that the initial encounter of specific CTLs with infected cells in lymphoid tissues is critical for this decision. Whether the course of the viral infection is acute or persistent for life primarily depends on the degree and kinetics of CTL exhaustion in infected lymphoid tissues. Virus-driven CTL expansion in lymphoid tissues resulted in the migration of large quantities of CTLs to nonlymphoid tissues, where they persisted at stable levels. Surprisingly, although virus-specific CTLs were rapidly clonally exhausted in lymphoid tissues under conditions of chronic infection, a substantial number of them migrated to nonlymphoid tissues, where they retained an effector phenotype for a long time. However, these cells were unable to control the infection and progressively lost their antiviral capacities (cytotoxicity and cytokine secretion) in a hierarchical manner before their eventual physical elimination. These results illustrate the differential tissue-specific regulation of antiviral T-cell responses during chronic infections and may help us to understand the dynamic relationship between antigen and T-cell populations in many persistent infections in humans.


Assuntos
Infecções por Arenaviridae/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , Tecido Linfoide/imunologia , Linfócitos T Citotóxicos/imunologia , Doença Aguda , Animais , Infecções por Arenaviridae/sangue , Infecções por Arenaviridae/virologia , Medula Óssea/imunologia , Linfócitos T CD4-Positivos/imunologia , Doença Crônica , Epitopos de Linfócito T/imunologia , Rim/imunologia , Cinética , Fígado/imunologia , Fígado/patologia , Pulmão/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Especificidade de Órgãos , Receptores de Antígenos de Linfócitos T/imunologia , Baço/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA